منابع مشابه
Effective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملLearning to Rank based on Analogical Reasoning
Object ranking or “learning to rank” is an important problem in the realm of preference learning. On the basis of training data in the form of a set of rankings of objects represented as feature vectors, the goal is to learn a ranking function that predicts a linear order of any new set of objects. In this paper, we propose a new approach to object ranking based on principles of analogical reas...
متن کاملMachine Comprehension Based on Learning to Rank
Machine comprehension plays an essential role in NLP and has been widely explored with dataset like MCTest. However, this dataset is too simple and too small for learning true reasoning abilities. (Hermann et al., 2015) therefore release a large scale news article dataset and propose a deep LSTM reader system for machine comprehension. However, the training process is expensive. We therefore tr...
متن کاملMidRank: Learning to rank based on subsequences
We present a supervised learning to rank algorithm that effectively orders images by exploiting the structure in image sequences. Most often in the supervised learning to rank literature, ranking is approached either by analyzing pairs of images or by optimizing a list-wise surrogate loss function on full sequences. In this work we propose MidRank, which learns from moderately sized sub-sequenc...
متن کاملPreference-Based Policy Learning
Many machine learning approaches in robotics, based on reinforcement learning, inverse optimal control or direct policy learning, critically rely on robot simulators. This paper investigates a simulatorfree direct policy learning, called Preference-based Policy Learning (PPL). PPL iterates a four-step process: the robot demonstrates a candidate policy; the expert ranks this policy comparatively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2010
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-010-5176-9